Skip to main content
  1. Notes/

Metric Space

A metric space M\mathcal{M} is a tuple (D,d)(\mathcal{D}, d), where D\mathcal{D} is a domain of objects and d:D×DRd: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R} is a total (distance) function, satisfying the following properties:

For all x,y,zDx, y, z \in \mathcal{D}:

  1. d(x,y)0d(x, y) \geq 0,
  2. d(x,y)=d(y,x)d(x, y) = d(y, x),
  3. x=yd(x,y)=0x = y \Leftrightarrow d(x, y) = 0,
  4. d(x,z)d(x,y)+d(y,z)d(x, z) \leq d(x, y) + d(y, z).

Zezula, P., Amato, G., Dohnal, V., & Batko, M. (2006). Similarity search: the metric space approach (Vol. 32). Springer Science & Business Media.